From the Field: Choosing Wheat for Organic Systems

On Thursday, November 13th, Dr. Brandon Gerrish, State Extension Small Grain Specialist planted our first Texas Organic Wheat Variety Trial at Todd Vranac’s certified organic farm in Rule, Texas. This test is an opportunity to evaluate wheat lines under authentic organic production conditions. This irrigated farm, managed organically over many seasons, offers an environment that conventional research plots often cannot replicate.

Wheat trials help us look at agronomic traits of wheat as well as evaluate our production systems in organic!

Each variety in the trial allows us to observe how wheat responds when relying on soil biology for nutrient cycling, competing with weeds without herbicides, and performing under the constraints of organic fertility sources. As organic wheat acreage expands in Texas, field-based evaluations like this are essential for identifying varieties that align with the agronomic realities of organic systems and for improving the recommendations available to growers.

Why Organic Variety Testing Isn’t Optional

One of the most important conversations I’ve had this year was with Dr. Jackie Rudd, Dr. Gerrish and the TAMU wheat breeding team this past August at the Small Grain Breeding Group meeting. We talked about the gap that still exists between conventional breeding and organic production, and why organic growers need data generated in organic fields.

The traits that matter most in organic systems differ from what many conventional trials measure. Organic producers need wheat that can do things like:

1. Emerge from deeper planting depths

Organic growers often plant deeper to reach moisture and to make mechanical weed control possible. With deeper rooting we can use rotary hoes or tine weeders to take our early season weeds and start cleaner. But many modern semi-dwarfs simply don’t have the coleoptile length to handle that depth. Lines with longer coleoptiles or alternative dwarfing genes (like Rht8) stand a better chance of thriving in these conditions.

2. Fight disease with genetics, not chemistry

Stripe rust, leaf rust, stem rust, Fusarium head blight, BYDV—these aren’t just occasional threats in organic wheat. Without fungicides, genetic resistance to disease becomes the primary protection for diseases. Multi-gene and adult-plant resistance are particularly valuable.

3. Use nutrients efficiently through the soil microbiome

Organic wheat depends on soil biology to help acquire nutrients. Varieties with strong root systems, mycorrhizal associations, and efficient nutrient uptake consistently do better in slow-release, biological systems. Traits like enhanced nitrate transporter activity or strong remobilization of nutrients during grain fill make a visible difference in yield.

4. Outcompete weeds

Early vigor, aggressive tillering, and a fast-closing canopy are necessary to yield production. These are the traits that help organic wheat shade out early warm season weeds and other winter annuals long before the weeds become yield-limiting.

5. Deliver high-quality grain for a premium market

Organic buyers want protein, strong gluten, good milling quality, low DON (a mycotoxin), and consistency. They also increasingly look for functional food traits like higher mineral content (iron, zinc, even selenium). The right variety can put an organic grower into a higher-value market.

This Year’s Trial

The trial this year includes a mix of public and private genetics—everything from long-standing varieties like TAM 114 and Smith’s Gold to experimental Oklahoma and Texas lines, plus new materials such as Green Hammer, Paradox, High Cotton, and Guardian. Click the link below to see the trial information.

Wheat Variety Trial in Excel

Organic tests like this will help answer important questions about how “conventional varieties” preform growing under organic conditions:

  • Which varieties take off fast enough to hold back early weeds?
  • Which can take advantage of irrigation while still operating under organic nutrient constraints?
  • Which lines show strong fall vigor and winter hardiness?
  • Which have the disease packages organic growers rely on?
  • Which varieties convert organic fertility into grain yield the most efficiently?

Organic Grower Research is Very Important!

Hosting a trial like this requires commitment, and I’m grateful for Todd Vranac’s willingness to put research into his organic acres. Organic agriculture depends on exactly this kind of farmer-researcher collaboration because:

  • It takes place under the conditions organic growers actually face.
  • Weather, weeds, fertility, and soil biology are real—not simulated.
  • It gives producers confidence that variety recommendations apply to their own operations.
  • It builds a shared knowledge base across the organic community.

As we go through the season I hope to share updates from the trial, including stand counts, disease observations, and eventually yield and quality results. Organic growers across Texas need these answers, and trials like this give us the data to make better variety recommendations year after year.

Testing varieties in organic fields doesn’t just improve one season’s crop. It strengthens the long-term resilience of organic grain production in the Southern Plains. And it helps breeders refine the traits that matter most for growers working in biologically driven systems.

Other Resources:

Texas Organic Agriculture: Expanding from Farm to Market

The Texas organic industry continues to grow on both ends of the supply chain—from the farms that grow organic crops and livestock to the companies that process, package, and distribute them. As of October 2025, the state lists 412 certified organic grower operations, including farms that produce crops, livestock, and wild crops on 512,000 Texas acres. At the same time, the number of certified organic handlers—processors, distributors, and packers—has climbed from 457 in 2023 to 694 in 2025, a 52% increase in just two years.

Who’s Growing Organically in Texas

Organic production in Texas is anchored by key field crops such as cotton (175 farms), peanuts (147), and wheat (132)—mainstays of the High Plains and Rolling Plains, where organic systems are well adapted to semi-arid soils and rotations. Corn (51) and sorghum or milo (49) are part of diversified feed and grain operations, while rice (25) remains strong along the Gulf Coast. Forage crops like alfalfa (25) and grass (40) support both organic livestock and soil health, while vegetable operations (21) range from small local farms near urban markets to large commercial producers serving regional buyers.

Among these 412 operations, 28 are certified for livestock, including 20 cattle and 8 poultry operations. The cattle operations include both grass-fed beef and organic dairy systems, emphasizing rotational grazing and homegrown forage to meet organic standards. The poultry farms focus mainly on pasture-based egg and broiler production, serving local and specialty markets. Together, these farms show how organic agriculture in Texas is evolving into an integrated system linking crops, forages, and livestock within the same ecological and market framework.

A Rapid Rise in Certified Handlers

The sharp increase in certified organic handlers—from 457 to 694—signals strong momentum beyond the farm gate. Much of this growth is tied to the USDA’s Strengthening Organic Enforcement (SOE) rule, implemented in 2023. This rule requires certification for more middle-market entities such as brokers, traders, and distributors who take ownership of organic products. The result is a more transparent and traceable supply chain, but also a measurable expansion in the number of certified businesses operating within it.

Texas’s 694 organic handlers now represent a wide range of activities. The largest sectors include fruits and vegetables (285), beverages (125), grains, flours, and cereals (105), nuts and seeds (111), seasonings and flavorings (102), and oils and oleoresins (71). These categories show that Texas’s organic sector is growing not only in raw production but in value-added processing, product manufacturing, and consumer-ready goods. Additional activity in livestock feed (23), dairy and dairy alternatives (27), meat, poultry, and eggs (35), processed foods (47), and fiber, textiles, and cotton (20) rounds out the picture of a maturing organic industry.

A Strengthening Organic Ecosystem

The combined growth in organic growers and handlers marks a new phase for Texas organic agriculture. Producers are supplying more raw organic commodities, and a growing network of handlers is processing, packaging, and marketing those products—creating a more complete and resilient organic system. The enforcement of SOE has helped formalize this network, ensuring that products remain traceable from farm to table. What was once a scattered mix of farms and processors is now forming into a connected supply chain—one capable of supporting long-term growth in the Texas organic market.

Smart Sensing in Organic Systems: How Drones, Satellites, and Sensors Help Detect Crop Stress Before It Happens

Smart sensing is transforming how we understand plant health in organic systems. By integrating satellite and drone imagery, in-field sensors, and artificial intelligence, we can now detect stress in crops long before symptoms appear. This technology doesn’t replace the farmer’s eye—it strengthens it, helping us protect soil biology, use resources more wisely, and make better management decisions.

Learning from Students and Staying Curious

This past Saturday (October 18), a group of high school students invited me to speak about their project on smart plant monitoring. They were designing a device to track plant health in real time. Their questions—about soil, light, and water—were sharp and curious. It reminded me why I love this field: whether we’re students or seasoned farmers, we’re all learning how to listen to plants a little better.

Their project also made me reflect on how far we’ve come. When I started in Extension, plant monitoring meant walking fields, taking notes, and maybe digging a soil sample. Now, we’re using satellites orbiting hundreds of miles above the earth and sensors no bigger than a pencil eraser to understand how crops respond to their environment.

From Satellites to Soil: The New Eyes of Agriculture

In organic production, timing is everything. A crop under stress can lose days of growth before we even notice it. But RGB drone and satellite imaging now allow us to spot stress early by detecting subtle changes in leaf color, canopy density, or reflectance.

Even more advanced are multispectral and hyperspectral sensors, which measure how plants reflect light across visible and infrared wavelengths. These patterns can reveal water stress, nitrogen deficiency, or disease pressure—well before a plant wilts or yellows.1

Thermal cameras add another layer. Drought-stressed plants reduce transpiration, causing leaf temperature to rise—a change that infrared sensors can detect long before visible damage occurs.2

Once the imagery is captured, we still rely on ground-truthing—walking to the coordinates, checking the crop, soil, and often pulling tissue samples. This blend of technology and touch keeps data meaningful.

Predictive Systems: Seeing Stress Before It Starts

The most exciting progress in recent years has been predictive capability. AI-powered analytics now integrate drone imagery, IoT soil data, and weather patterns to learn what “normal” looks like for a crop. When the system detects deviations—like a drop in chlorophyll fluorescence or a rise in leaf temperature—it flags them early.3

One powerful method is solar-induced chlorophyll fluorescence (SIF), which measures photosynthetic efficiency. Subtle declines in fluorescence intensity can indicate stress from drought, salinity, or nutrient imbalance days before the plant shows visible symptoms.4

Meanwhile, IoT sensor networks are spreading across fields. These small devices monitor soil moisture, pH, canopy temperature, and even sap flow, sending real-time data to cloud dashboards that can automatically adjust irrigation schedules.5

This isn’t just smart—it’s proactive agriculture.

Image acquisition setups using different sensors (i) DJI Matrice 600 Pro with a Sony Alpha 7R II, 42.4-megapixel RGB camera mounted on it(Sapkota, 2021), (ii) A close-range laboratory imaging system with a Micro-Hyperspec VNIR sensor in controlled lighting condition (Dao et al., 2021a), (iii) HyperCam on the tripod, Fluke TiR1, Lci leaf porometer, Infragold as well as dry and wet references targets (Gerhards et al., 2016) (iv) Chamber equipped with two Raspberry Pi 3B + and an ArduCam Noir Camera with a motorized IR-CUT filter and two infrared LEDs (Sakeef et al., 2023).6

Why This Matters for Organic Systems

Organic farming depends on living systems—soil microbes, organic matter, and ecological balance. Unlike conventional systems, we can’t rely on quick chemical fixes. We need to detect stress early enough to respond biologically—through irrigation management, microbial inoculants, or balanced foliar nutrition.

Smart sensing tools help us manage that complexity. When we combine spectral imagery, soil data, and climate information, we begin to see the farm as an interconnected ecosystem rather than a collection of separate fields.

Monitoring also supports stewardship. Water-quality sensors can now detect salinity and bicarbonate buildup that harm roots over time. Linking those readings with AI-derived stress maps helps producers align soil chemistry, water quality, and plant physiology in one continuous feedback system.7

The Human Element Still Matters

Even with all this technology, the farmer’s experience is irreplaceable. Data can tell us something changed, but it takes experience to know why. Was that NDVI dip caused by poor drainage, pests, or a timing issue in irrigation?

Technology should not distance us from the field—it should bring better insight to our decisions. As I often tell growers, just as computers need rebooting, we occasionally need to “reboot” our interpretation—to align the data with what we know from hands-on experience.

A Partnership Between Grower, Plant, and Sensor

When those students asked how technology fits into farming, I told them this: smart monitoring doesn’t make agriculture less human—it makes it more informed.

The future of organic production is a partnership between the grower, the plant, and the sensor. When all three communicate clearly, we grow more than crops—we grow understanding. And in that understanding lies the future of any sustainable agriculture.

Further Reading

References

  1. Dutta, D. et al. (2025). “Hyperspectral Imaging in Agriculture: A Review of Advances and Applications.” Precision Agriculture, 26(3): 445–463. ↩︎
  2. Cendrero-Mateo, M.P. et al. (2025). “Thermal and Spectral Signatures of Plant Stress.” Frontiers in Plant Science, 16:31928. https://doi.org/10.3389/fpls.2025.1631928 ↩︎
  3. Chlingaryan, A. et al. (2025). “Machine Learning for Predictive Stress Detection in Crops.” Computers and Electronics in Agriculture, 218:107546. https://www.sciencedirect.com/science/article/pii/S0168169924011256 ↩︎
  4. Guanter, L. et al. (2024). “Solar-Induced Fluorescence for Assessing Vegetation Photosynthesis.” NASA Earthdata Training Series. https://www.earthdata.nasa.gov/learn/trainings/solar-induced-fluorescence-sif-observations-assessing-vegetation-changes-related ↩︎
  5. Ahmad, L. & Nabi, F. (2024). Agriculture 5.0: Integrating AI, IoT, and Machine Learning in Precision Farming. CRC Press. ↩︎
  6. Chlingaryan, A. et al. (2025). “Machine Learning for Predictive Stress Detection in Crops.” Computers and Electronics in Agriculture, 218:107546. https://www.sciencedirect.com/science/article/pii/S0168169924011256 ↩︎
  7. Gómez-Candón, D. et al. (2025). “Integrating Water Quality Sensors and Remote Sensing for Sustainable Irrigation.” Agricultural Water Management, 298:108072. ↩︎

Milling, Baking, Planting Organic Wheat: What Farmers Need to Know

When organic wheat growers choose a variety, they aren’t just planting seed—they’re planting bread, tortillas, and the reputation of their crop in the marketplace. That’s why milling and baking quality matter as much as yield. Extension Specialists and Wheat Researchers have been digging into an important question for growers: how do milling quality and baking quality fit into variety choice, especially for organic systems? These traits, along with protein and yield, play a direct role in what millers want and what farmers get paid for.

Milling Quality vs. Baking Quality

  • Milling quality is about how efficiently a kernel turns into flour. Seed size, uniformity, and hardness all affect milling yield.
  • Baking quality is about what happens in the bakery—how dough handles, rises, and produces bread or tortillas that buyers want.

Testing happens at several levels. The Cereal Quality Lab at College Station does preliminary evaluations, while the USDA and Wheat Quality Council conduct full baking and milling trials with multiple mills and bakeries. Every TAM variety is rated, and those scores directly influence variety release decisions.

Variety Highlights for Organic Wheat Growers

TAM 114

Mid-season hard red winter wheat prized for excellent milling and baking quality, solid yield potential, and strong adaptability.

  • Strengths: Excellent dough properties, solid straw strength, good grazing ability, drought tolerance, and winterhardiness. Moderately resistant to stripe, leaf, and stem rusts as well as Hessian fly; good acid soil tolerance.
  • Consistently appears on “Pick” lists for irrigated and limited irrigation systems thanks to its stable performance.
TAM 115

A dual-purpose variety offering both grain yield and grazing potential, with enhanced disease and insect resistance.

  • Strengths: Excellent milling and baking quality, large seed, high test weight, strong drought tolerance, and resilience against leaf, stripe, and stem rust, greenbug, and wheat curl mite (which contributes to Wheat Streak Mosaic Virus (WSMV) resistance).
  • Adapted across High Plains, Rolling Plains, Blacklands, and even Western Kansas/Eastern Colorado. Performs well under irrigation and good dryland conditions—but less reliable under severe dryland stress due to lower tillering capacity.
TAM 205

TAM 205 is a newer dual-purpose variety known for its strong milling and baking quality paired with unmatched disease resistance. It is highly adaptable across systems and is a strong option for both grain and forage.
Strengths:

  • Exceptional milling and baking quality
  • Good forage potential
  • Broad resistance (leaf, stripe, stem rust; WSMV; Fusarium head blight)
  • High test weight and large seed
TAM 113

A reliable dryland performer with good grain and forage potential, especially under stress.

  • Strengths: Solid grain yield, decent milling quality, and forage use. Early maturing with strong emergence and tillering – valuable in challenging environments. Offers resistance to stripe, leaf, and stem rusts.
  • Remaining a steady Dryland “Pick” in High Plains trials thanks to its adaptability.

Reminder: Organic farmers need to make seed purchase arrangements early (well before planting season) to ensure they have an adequate supply of untreated seed.

Protein Content vs. Protein Functionality

Farmers often watch protein percent, but researchers emphasize that protein functionality—how protein behaves in dough—is more important. While there’s no easy field test for this, variety choice remains a strong predictor.

When evaluating economics, consider total protein yield (bushels × protein percent). Sometimes a lower-yielding but higher-protein field can be more profitable than a high-yield, low-protein one.

Of course, protein levels don’t appear out of thin air. They’re the result of fertility, management, and soil health—areas where organic systems work a little differently than conventional.

Nitrogen and Organic Systems

One point of clarification: organic wheat does not suffer from a “late-season nitrogen challenge” so much as it requires planning ahead for higher yields. Excellent varieties and management can unlock yield potential, but only if soil fertility is built to support them.

  • Cover crops can provide up to 100 lbs of nitrogen per acre.
  • Manure composts from chicken or dairy sources can supply around 40 lbs of nitrogen per 1,000 lbs applied.
  • These are slow-release, biologically active forms of nitrogen. They need to be managed in advance so nutrients are available as the wheat grows.
  • Liquid organic N sources exist, but they are generally too expensive to justify based on the modest yield increases in wheat.

This means success in organic wheat fertility comes from building the soil and feeding the crop over the long term, not chasing protein with late-season nitrogen shots. The key takeaway is that organic fertility is a long game—cover crops and compost must be planned well in advance to match the yield potential of high-quality varieties like TAM 114 and TAM 205.

TAM Varieties and Seed Saving

Beyond fertility, seed access and seed-saving rights also matter to organic growers when planning for the future. All TAM varieties are public releases and not under Plant Variety Protection. Farmers can legally save and replant TAM seed for their own use. This is especially valuable in organic systems where untreated seed availability can be limited.

Why This Matters

In conventional systems, buyers reward bushels. In organic systems, millers and bakers want quality along with yield. Understanding both milling and baking traits—and managing fertility to match variety potential—helps organic growers capture more value.

As we look ahead, TAM 114 remains a cornerstone for organic production, but TAM 205 is quickly emerging as a variety that combines yield, quality, and resilience. With the right fertility planning and variety choice, Texas organic wheat can continue to meet both market demand and farmer profitability.

By combining resilient TAM varieties with thoughtful organic fertility planning, Texas wheat growers can continue to deliver grain that is profitable on the farm and dependable in the marketplace.

Resources for Growers

Organic fertilizer – what is it, what are the rules, where do you buy it?

I get lots of general questions about what to use for fertilizer in organic agriculture. It is generally accepted that compost is good for organic, but does it have to be certified organic compost? What about manure? Can you buy some of these processed fertilizer products? What are the rules for fertilizers?

Click on any link below to scroll down!

  1. 205.203 Soil fertility and crop nutrient management practice standard.
  2. What about some of these organic fertilizers you can buy?
  3. Some newer organic fertilizers – protein hydrolysates
  4. Where do you buy this stuff in bulk?
  5. Other Resources:

The first place to start is with the National Organic Program rules and regulations.

(a) The producer must select and implement tillage and cultivation practices that maintain or improve the physical, chemical, and biological condition of soil and minimize soil erosion.
(b) The producer must manage crop nutrients and soil fertility through rotations, cover crops, and the application of plant and animal materials.
(c) The producer must manage plant and animal materials to maintain or improve soil organic matter content in a manner that does not contribute to contamination of crops, soil, or water by plant nutrients, pathogenic organisms, heavy metals, or residues of prohibited substances. Animal and plant materials include:


First let’s talk about raw animal manure, which must be composted unless it is:
(a) Applied to land used for a crop not intended for human consumption or,
(b) Incorporated into the soil not less than 120 days prior to the harvest of a product whose edible portion has direct contact with the soil surface or soil particles or
(c) Incorporated into the soil not less than 90 days prior to the harvest of a product whose edible portion does not have direct contact with the soil surface or soil particles.

Second on the list is composted plant and animal materials produced through a process. This process involves the mixing of manures generally with some carbon sources like leaves, bark, hay, hulls, etc. to create a product that is:
(a) Establish an initial Carbon: Nitrogen ratio of between 25:1 and 40:1 and
(b) Maintains a temperature of between 131 °F and 170 °F for 3 days using an in-vessel or static aerated pile system or
(c) Maintains a temperature of between 131 °F and 170 °F for 15 days using a windrow composting system, during which period, the materials must be turned a minimum of five times.

Last in this list of NOP materials are Uncomposted plant materials. This is typically what you might call mulches like bark chips, leaves, grass, etc. These are used a lot in perennial crop systems to control weeds and add fertility over time.

As you can see all of these products are from a natural source and that natural source does not have to be a certified organic source. Neither the animals or the plants that you use to make compost or just get raw manure or mulch has to be from an organic farm.

Let’s go back to the rules: A producer may manage crop nutrients and soil fertility to maintain or improve soil organic matter content in a manner that does not contribute to contamination of crops, soil, or water by plant nutrients, pathogenic organisms, heavy metals, or residues of prohibited substances by applying, if you follow these restrictions below.

(a) A crop nutrient or soil amendment included on the National List of synthetic substances allowed for use in organic crop production (click here for that list).
(b) A mined substance of low solubility.
(c) A mined substance of high solubility: Provided the substance is used in compliance with the conditions established on the National List of nonsynthetic materials prohibited for crop production.
(d) Ash obtained from the burning of a plant or animal material, except as prohibited in the list below.
(e) A plant or animal material that has been chemically altered by a manufacturing process: Provided, that the material is included on the National List of synthetic substances allowed for use in organic crop production.

The producer (that is you or any company that makes an organic fertilizer) must not use:
(a) Any fertilizer or composted plant and animal material that contains a synthetic substance not included on the National List of synthetic substances allowed for use in organic crop production.
(b) Sewage sludge (biosolids from a city sewage plant or from a septic tank or a mix of either source with plant material to make a compost).
(c) Burning as a means of disposal for crop residues produced on the operation: Except, That, burning may be used to suppress the spread of disease or to stimulate seed germination. We sometimes do a heat process to “sterilize” a plant material before using. Doubt you will ever need this part!

Protein hydrolysates are increasingly recognized for their role in organic fertilization strategies, offering a sustainable approach to enhance plant growth and soil health. Derived from proteins through hydrolysis, which breaks down proteins into smaller chains of amino acids or even individual amino acids, these products provide a readily available source of nitrogen and other nutrients to plants. This process can involve enzymatic, chemical, or thermal hydrolysis methods, each with its specific advantages and applications.

Nutrient Availability: Protein hydrolysates are particularly valued in organic agriculture for their rapid assimilation by plants. Unlike synthetic fertilizers, these organic nutrients are in forms that plants can easily absorb and utilize, leading to efficient nutrient use and potentially reducing the need for additional fertilization.

Soil Health: Beyond providing nutrients, protein hydrolysates contribute to soil health. They support the growth and activity of beneficial microorganisms, which play a crucial role in soil nutrient cycling, organic matter decomposition, and the suppression of soil-borne diseases. This can lead to improved soil structure, water retention, and fertility over time.

Real Life Example: Consider a scenario where an organic farmer is growing lettuce, a crop that demands a consistent supply of nitrogen for leaf development. By applying a protein hydrolysate-based fertilizer, the farmer can provide a quick-acting source of nitrogen that is readily available for uptake by the lettuce plants. This not only supports the rapid growth of the lettuce but also contributes to the overall soil health by feeding the microbial life within the soil.

Problems? Yes, there are problems with some of these products. Nutrient availability is an issue. We have done experiments, and the product(s) may be slow to work in the plant or the actual nutrients may be lower than stated. This can be caused by a number of factors such as binding to soil or volatilization, but it does mean you need to know your source and product.

Sources: There are just too many to list! This new source for organic fertilizer is great to see but there are a lot of companies getting into this market. Just know that they are not cheap, companies can be far away meaning shipping is a big cost, and you need to know the product well. Please, please be sure that the product you are considering is OMRI approved. Sometimes these blends are with synthetic sources…….

South Plains Compost

  • PO BOX 190, Slaton, Texas 79364
  • Toll-free: 888-282-2000
  • Office: 806-745-1833
  • FAX: 806-745-1170 
  • Physical Address: 5407 East Highway 84Slaton, Texas 79364

Sigma AgriScience

  •  Office: 281-941-6944
  •  info@sigma-agri.com
  • Corporate Office
    580 Maxim Dr., Boling, TX 77420
  • Boling Plant
  • 2565 FM 1096, Boling, TX 77420
  •  Winnsboro Plant
  • 400 All Star Rd, Winnsboro, TX 75494

Morgan Bulk

  • 3075 FM 1116, Gonzales, Tx. 78629
  • Phone: 830-437-2855
  • Kerry Mobile: 830-857-3919
  • Bobby Morgan Mobile: 830-857-4761
  • Fax: 830-437-2856

7H Nutrients (Pelleted Product)

  • 8063 S US HWY 183, Gonzales, TX
  • Briant Hand
  • Mobile: 830-857-4340
  • 7hhand@gmail.com

Green Cow Compost

Microbes Biosciences (Rhizogen Granular)

Viatrac Fertilizer

Nature Safe Fertilizers

  • 5601 N Macarthur Blvd, Irving, TX, 75038
  • Main Phone: (469) 957-2725
  • Main Fax: (469) 957-2655
  • Rob Borchardt (sales)
  • Mobile: 512-850-7345
  • rob.borchardt@darlingii.com

Organics by Gosh

Earthwise Organics

Ferticell

  • Corporate: (480) 361-1300
  • Sales: (480) 398-8511
  • Fax: (480) 500-5967
  • info@ferticellusa.com
  • 5865 S. Kyrene Rd., Suite 1, Tempe, AZ 85283

True Organic Products

  • 1909 Fairhaven Gateway
  • Georgetown, TX 78626
  • Mobile (737) 403-0064
  • Corporate (831) 375-4796
  • Barret Milam-Regional Sales Representative-Texas
  • bmilam@true.ag
  • true.ag

Biopesticides and Biostimulants: Innovation, Challenges, and Growth

Introduction

Biopesticides and biostimulants are at the forefront of organic agriculture, offering natural solutions for pest control and plant health. While these products have gained popularity, the industry faces both opportunities and challenges as it evolves. This post explores the similarities and differences between biopesticides and biostimulants, their regulatory landscape, and what the future holds for these technologies.

Defining Biopesticides and Biostimulants

First let’s look at Biopesticides

Biopesticides are derived from natural materials, including microorganisms, plants, and minerals, to control pests and diseases. They function through competition, antibiosis, or physiological disruption of target organisms. Biopesticides as a category are regulated by the Environmental Protection Agency (EPA) as is detailed below!

Types of Biopesticides:
  • Microbial Biopesticides: Contain beneficial bacteria, fungi, viruses, or protozoa that suppress pests (e.g., Bacillus thuringiensis Bt for caterpillar control).
  • Biochemical Biopesticides: Utilize plant extracts, pheromones, and essential oils to affect pest behavior or physiology. For example, Thyme oil or Neem oil would fit this category.
  • Plant-Incorporated Protectants (PIPs): Genetic material introduced into plants, such as Bt proteins in genetically modified (GMO) crops. These are not to be used in organic production but are considered a biopesticide.

This image above is from the EPA website for Biopesticides. Click on the image to go to the website and check on a biopesticides registration!

How a Company Determines the Need for EPA Approval for a Biopesticide

A company developing a new biopesticide must determine if its product falls under EPA regulation by assessing the active ingredient, intended use, and mode of action. The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) mandates that any substance intended for preventing, destroying, repelling, or mitigating pests must be registered as a pesticide with the U.S. Environmental Protection Agency (EPA). A company should ask the following questions to assess if its product qualifies as a biopesticide requiring EPA registration:

  1. Does the product actively control pests, pathogens, or weeds?
    • If the product claims direct pest suppression, it is a pesticide and requires EPA approval.
    • If it only enhances plant health without targeting pests directly, it may qualify as a biostimulant and not require EPA registration.
  2. What is the mode of action?
    • If the product kills, inhibits, or repels pests, it is considered a pesticide.
    • If the product works by stimulating plant defenses or improving nutrient uptake, it may not require registration.
  3. Is the active ingredient a known biopesticide or plant extract?
    • If the active ingredient is a microorganism, plant extract, or biochemical compound known to suppress pests, it likely needs EPA registration.
    • The EPA maintains a list of registered biopesticide active ingredients, and companies should check if similar compounds are already registered.
  4. Are pesticidal claims being made on the label?
    • If the product claims pest control properties (e.g., “kills fungi,” “controls insects”), it falls under FIFRA jurisdiction and requires EPA registration.
    • If the product only states benefits like “enhances plant vigor” or “improves root growth,” it may avoid registration.

Biostimulants

Biostimulants enhance plant growth, stress tolerance, and nutrient efficiency without directly targeting pests or diseases. Unlike biopesticides, they do not require EPA registration, leading to a highly unregulated market.

That said as a disclaimer there are many biostimulants that do a good job at preventing, controlling or managing for pests in crops. They can have a dual function even though they don’t have an EPA registration – a definite grey area!

Key Categories of Biostimulants:
  • Microbial Biostimulants: Beneficial bacteria and fungi that improve nutrient uptake and plant stress resilience.
  • Seaweed and Plant Extracts: Natural compounds that stimulate plant metabolism and root development.
  • Amino Acids and Humic Substances: Organic molecules that enhance soil health and nutrient availability.
  • For a complete look at biostimulants check out this post and the many different types available. Biostimulants: The Next New Frontier

This chart above (just click on it for a larger image) shows how an SAR system works in the plant. In many cases an SAR developed biostimulant will also be labeled with EPA as a biopesticide simply because it does control specific pests in the plant while boosting the plants defense mechanisms.

Similarities Between Biopesticides and Biostimulants
  • Both are used in sustainable and organic agriculture to reduce reliance on synthetic chemicals.
  • Derived from natural sources, including microorganisms and plant extracts.
  • Improve overall plant health, either through disease suppression (biopesticides) or enhanced resilience (biostimulants).
  • Can be combined with conventional or organic inputs in integrated pest and crop management (IPM/ICM).
FeatureBiopesticidesBiostimulants
Primary PurposeControl pests and diseasesImprove plant growth and resilience
MechanismDirectly targets pests/pathogensEnhances plant physiological processes
RegulationSubject to pesticide regulations (EPA, OMRI)Less regulatory oversight, often considered soil amendments
Mode of ActionAntibiosis, competition, parasitismHormonal stimulation, nutrient uptake efficiency
ExamplesBacillus subtilis for fungal disease controlSeaweed extracts for drought tolerance

Industry Challenges and Regulatory Considerations

One of the biggest challenges in the biostimulant industry is the lack of clear regulations. While biopesticides undergo rigorous EPA evaluation, biostimulants can be marketed with minimal oversight. This has led to the proliferation of products with unverified claims, making it difficult for growers to differentiate effective solutions from ineffective ones.

Government agencies are actively considering regulatory frameworks for biostimulants to ensure quality control without stifling innovation. The Biostimulant Industry Alliance and other trade organizations are working to establish scientific standards and promote best practices.

Market Trends and Future Outlook

Despite challenges, the biopesticide and biostimulant markets are poised for significant growth. Market research predicts a continued rise in demand due to increasing consumer preference for organic and residue-free crops. Additionally, advancements in microbial formulations and AI-driven precision agriculture will enhance the effectiveness of these products.

Data and Charts from Industry Sources

1. Projected Market Growth of Biopesticides and Biostimulants (2020-2030)
  • Data Source: Market research reports from MarketsandMarkets, Mordor Intelligence, and Research and Markets.
  • Methodology: Extrapolation of market size based on reported CAGR (Compound Annual Growth Rate) values of 12-15% for biopesticides and 13-16% for biostimulants from recent industry reports.

References:

  • MarketsandMarkets (2023). Biopesticides Market – Global Forecast 2028.
  • Mordor Intelligence (2023). Biostimulants Market Analysis & Forecast 2028.
  • Research and Markets (2023). Trends in Agricultural Biologicals.
2. Investment Trends in Biostimulant Research and Development (2015-2025)
  • Data Source: Reports from AgFunder, FAO, and OECD on global agricultural input investments.
  • Methodology: Estimation based on reported investments in biologicals, venture capital funding for agri-tech startups, and projected R&D budgets from industry leaders.

References:

  • AgFunder (2023). Investment in AgTech and Biostimulants.
  • FAO (2023). Sustainable Agriculture and Innovation Trends.
  • OECD (2022). Trends in Agricultural R&D.
3. Adoption Rates of Biostimulants Across Different Crop Sectors
  • Data Source: Surveys and adoption studies from USDA, European Biostimulant Industry Council (EBIC), and International Biostimulants Forum.
  • Methodology: Aggregated adoption data from industry reports and regional case studies, indicating highest adoption in vegetable and fruit production, with lower adoption in ornamentals.

References:

  • USDA (2023). Adoption of Biostimulants in U.S. Crop Production.
  • EBIC (2023). European Biostimulants Market Report.
  • International Biostimulants Forum (2022). Global Trends in Biological Crop Inputs.
4. Regulatory Differences Between Biopesticides and Biostimulants
  • Data Source: Regulations from EPA, European Food Safety Authority (EFSA), and USDA Organic Program.
  • Methodology: Comparative analysis of regulatory frameworks governing product registration, scientific validation, and market oversight for biopesticides versus biostimulants.

References:

  • EPA (2023). Biopesticide Registration Guidelines.
  • EFSA (2023). Regulatory Framework for Biostimulants in the EU.
  • USDA (2023). Organic Input Standards and Market Oversight.