Milling, Baking, Planting Organic Wheat: What Farmers Need to Know

When organic wheat growers choose a variety, they aren’t just planting seed—they’re planting bread, tortillas, and the reputation of their crop in the marketplace. That’s why milling and baking quality matter as much as yield. Extension Specialists and Wheat Researchers have been digging into an important question for growers: how do milling quality and baking quality fit into variety choice, especially for organic systems? These traits, along with protein and yield, play a direct role in what millers want and what farmers get paid for.

Milling Quality vs. Baking Quality

  • Milling quality is about how efficiently a kernel turns into flour. Seed size, uniformity, and hardness all affect milling yield.
  • Baking quality is about what happens in the bakery—how dough handles, rises, and produces bread or tortillas that buyers want.

Testing happens at several levels. The Cereal Quality Lab at College Station does preliminary evaluations, while the USDA and Wheat Quality Council conduct full baking and milling trials with multiple mills and bakeries. Every TAM variety is rated, and those scores directly influence variety release decisions.

Variety Highlights for Organic Wheat Growers

TAM 114

Mid-season hard red winter wheat prized for excellent milling and baking quality, solid yield potential, and strong adaptability.

  • Strengths: Excellent dough properties, solid straw strength, good grazing ability, drought tolerance, and winterhardiness. Moderately resistant to stripe, leaf, and stem rusts as well as Hessian fly; good acid soil tolerance.
  • Consistently appears on “Pick” lists for irrigated and limited irrigation systems thanks to its stable performance.
TAM 115

A dual-purpose variety offering both grain yield and grazing potential, with enhanced disease and insect resistance.

  • Strengths: Excellent milling and baking quality, large seed, high test weight, strong drought tolerance, and resilience against leaf, stripe, and stem rust, greenbug, and wheat curl mite (which contributes to Wheat Streak Mosaic Virus (WSMV) resistance).
  • Adapted across High Plains, Rolling Plains, Blacklands, and even Western Kansas/Eastern Colorado. Performs well under irrigation and good dryland conditions—but less reliable under severe dryland stress due to lower tillering capacity.
TAM 205

TAM 205 is a newer dual-purpose variety known for its strong milling and baking quality paired with unmatched disease resistance. It is highly adaptable across systems and is a strong option for both grain and forage.
Strengths:

  • Exceptional milling and baking quality
  • Good forage potential
  • Broad resistance (leaf, stripe, stem rust; WSMV; Fusarium head blight)
  • High test weight and large seed
TAM 113

A reliable dryland performer with good grain and forage potential, especially under stress.

  • Strengths: Solid grain yield, decent milling quality, and forage use. Early maturing with strong emergence and tillering – valuable in challenging environments. Offers resistance to stripe, leaf, and stem rusts.
  • Remaining a steady Dryland “Pick” in High Plains trials thanks to its adaptability.

Reminder: Organic farmers need to make seed purchase arrangements early (well before planting season) to ensure they have an adequate supply of untreated seed.

Protein Content vs. Protein Functionality

Farmers often watch protein percent, but researchers emphasize that protein functionality—how protein behaves in dough—is more important. While there’s no easy field test for this, variety choice remains a strong predictor.

When evaluating economics, consider total protein yield (bushels × protein percent). Sometimes a lower-yielding but higher-protein field can be more profitable than a high-yield, low-protein one.

Of course, protein levels don’t appear out of thin air. They’re the result of fertility, management, and soil health—areas where organic systems work a little differently than conventional.

Nitrogen and Organic Systems

One point of clarification: organic wheat does not suffer from a “late-season nitrogen challenge” so much as it requires planning ahead for higher yields. Excellent varieties and management can unlock yield potential, but only if soil fertility is built to support them.

  • Cover crops can provide up to 100 lbs of nitrogen per acre.
  • Manure composts from chicken or dairy sources can supply around 40 lbs of nitrogen per 1,000 lbs applied.
  • These are slow-release, biologically active forms of nitrogen. They need to be managed in advance so nutrients are available as the wheat grows.
  • Liquid organic N sources exist, but they are generally too expensive to justify based on the modest yield increases in wheat.

This means success in organic wheat fertility comes from building the soil and feeding the crop over the long term, not chasing protein with late-season nitrogen shots. The key takeaway is that organic fertility is a long game—cover crops and compost must be planned well in advance to match the yield potential of high-quality varieties like TAM 114 and TAM 205.

TAM Varieties and Seed Saving

Beyond fertility, seed access and seed-saving rights also matter to organic growers when planning for the future. All TAM varieties are public releases and not under Plant Variety Protection. Farmers can legally save and replant TAM seed for their own use. This is especially valuable in organic systems where untreated seed availability can be limited.

Why This Matters

In conventional systems, buyers reward bushels. In organic systems, millers and bakers want quality along with yield. Understanding both milling and baking traits—and managing fertility to match variety potential—helps organic growers capture more value.

As we look ahead, TAM 114 remains a cornerstone for organic production, but TAM 205 is quickly emerging as a variety that combines yield, quality, and resilience. With the right fertility planning and variety choice, Texas organic wheat can continue to meet both market demand and farmer profitability.

By combining resilient TAM varieties with thoughtful organic fertility planning, Texas wheat growers can continue to deliver grain that is profitable on the farm and dependable in the marketplace.

Resources for Growers

Planning Organic Production with a Practical Price Index

In Extension, we’re often asked to help farmers and food businesses plan for the future—whether it’s transitioning acreage to organic, developing budgets, or evaluating the economics of new practices. One of the most common challenges we face is this: how do you plan for prices in an unpredictable market?

While no one can forecast future prices with certainty, that doesn’t mean we’re flying blind. We base our planning on something measurable, reliable, and rooted in history—and in organic agriculture, one of the most useful tools for this is a broad price index or multiplier.

Why Use a Price Multiplier?

Organic markets—like all markets—fluctuate. Prices are affected by everything from weather and input costs to consumer demand and global trade. But when we look at long-term trends, we begin to see patterns that can inform sound decision-making.

When we have access to strong market data—such as for organic corn, cotton, dairy, and many fruits and vegetables—we can use that data to create benchmarks. These help answer practical questions:

  • What kind of price can I reasonably expect if I go organic?
  • How much more can I budget for input costs and still break even?
  • Will this transition pencil out?

To answer these questions, we need a reference point—and that’s where a 1.6 multiplier comes in.

What Is the 1.6 Organic Multiplier?

The 1.6 multiplier means that organic farmgate prices tend to average about 1.6 times higher than conventional prices for many major commodities over the long run. That’s a 60% premium, based on real market data and USDA price tracking over the past decade or more. I happened to stumble onto this idea when I read an article in Progressive Dairy about conventional milk price forecasts through 2025. (Click to Read) This article made me wonder if I could use historical organic dairy milk prices in relation to conventional dairy milk prices and use this ratio to predict future organic prices. It was amazing to see what I kind of knew, that organic prices do follow with conventional prices for the most part!

So, this is not a guess. It’s backed by:

  • USDA AMS organic market summaries for corn (1.6 is pretty stable for corn) and cotton (less stable as prices have been higher making the index 1.6-2.0 or higher).
  • National organic dairy price reports, which show organic milk regularly selling at 1.5 to 1.65 times the price of conventional.
  • Industry-wide organic vegetable and fruit pricing that shows farmgate premiums in the 1.5 to 1.7 range across categories like tomatoes, lettuce, and apples.

Whether you’re planning production, analyzing risk, or applying for a grant or loan, this index provides a realistic baseline. It is not too optimistic or too pessimistic and is useful for planning purposes.

When This Index Works—and When It Doesn’t

The 1.6 multiplier is a planning tool, not a crystal ball. It works best:

  • When building enterprise budgets for row crops, dairy, and produce.
  • When discussing profitability potential with transitioning farmers.
  • When negotiating contracts or thinking through insurance or risk tools.
  • In extension workshops, to help audiences grasp market potential quickly.

However, this index doesn’t capture every situation. Local sales, direct markets, specialty crops, and extreme weather or supply chain issues can cause premiums to fall below or rise above the average. Sometimes, organic produce in a saturated market may only bring in a 10–20% premium, while other times a rare variety or short supply can push that number above 2x (or higher) the conventional price.

Why It’s Still Useful

Despite those swings, planning requires a number—and the 1.6 index is a solid, evidence-based starting point.

When I help producers set up organic systems, I don’t want to promise the moon. Instead, it is better to offer realistic projections grounded in long-term national trends.

Always I encourage producers to:

  • Adjust their projections up or down depending on crop, region, and market access.
  • Keep checking updated USDA-AMS, Argus Media, or buyer data each year.
  • Use the 1.6x benchmark as a baseline, not a guarantee.

Final Thoughts

As organic agriculture continues to grow, tools like this price index become more and more valuable. They help all of us in organic talk apples to apples with producers, gins, co-ops, lenders, and buyers. They also help demystify what can sometimes feel like a complex or volatile market.

My plan and my job is to keep helping farmers make decisions that are smart, sustainable, and rooted in good data.

Turning Oilfield Wastewater into Agricultural Opportunity

As farmers in the Texas know all too well, water is the lifeblood of our land—and it’s in short supply. But what if one of the most abundant waste streams in our region could be cleaned up and used to grow crops? That’s the question being tested right now in several pilot projects across Texas, where treated oilfield wastewater, called produced water, is being evaluated for agricultural use.

WaterTectonics at a site in Midland treating Produced Water for reuse in a fracking operation. Similar to what might be done in agriculture. Picture from https://www.watertectonics.com/project/texas-produced-water-reuse-treatment/

What is Produced Water?

Produced water is the salty, chemical-laden byproduct that comes up with oil and gas during drilling operations. The Permian Basin alone generates around 24 million barrels of this water every day—that’s equivalent to roughly 1 billion gallons, about 37,196 acre-inches, or over 3,100 acre-feet daily. Historically, this water has been disposed of underground, but with growing water needs and improving treatment technologies, many are asking: can we make this water safe and useful for agriculture??

New Pilot Projects in Texas Agriculture

Thanks to recent legislation (notably SB 1145, effective Sept. 1, 2025), Texas is laying the groundwork for farmers to eventually use treated produced water. But for now, only pilot projects are permitted—and here are some of the most important ones:

OrganizationPilot ScopeLocationCrops or Focus
Texas Pacific Water Resources (TPWR)Treating water with reverse osmosis; testing 400+ contaminantsMidland and Pecos River areaAlfalfa, native grasses (greenhouse & outdoor)
Deep Blue OperatingIrrigation pilot using up to 27,300 gal/dayMidland CountyCotton, bermuda grass, alfalfa, wheat
Texas Produced Water ConsortiumResearch coordination, data analysisMultiple West Texas sitesSupports 5 pilot sites with varying treatment systems
TETRA & EOG ResourcesDesalination pilot with high recovery ratesPermian BasinRangeland grasses (greenhouse testing)
Aris Water Solutions & GarverMembrane & thermal treatment systemsPermian BasinSystem design; seeking TCEQ irrigation permits
General Land Office & EOG Resources1-acre soil/crop health trialReeves CountyMonitoring nutrient uptake and plant health

These pilot projects are being carefully watched—not only by state regulators but by farmers, environmental scientists, and rural water managers. If successful, they could help shift produced water from being a liability to a resource.

Opportunities for High-Value Ag

For Texas (particularly West Texas) growers, the implications are huge. While piping treated produced water to distant farms is one possible use, its greatest potential may lie right at the source—near oilfields. These areas often have access to electricity, trucking infrastructure, and available land. That makes them ideal for developing high-value production systems where water and logistics are already in place. In this context, treated produced water could potentially support:

  • Alfalfa for hay export or dairy feed
  • Hydroponic cotton in controlled environments—growing cotton without soil in greenhouses using treated produced water. This approach, pioneered in Spain by Magtech and now being explored by researchers in Texas, can increase cotton yield up to 60 times per plant while reducing water use by as much as 70%. With greenhouse infrastructure, electricity, and logistics already in place at oilfield sites, hydroponic cotton may offer a promising high-value use for treated produced water.
  • Small grains for forage or cover crop use—including some hydroponic or germinated forage systems grown in controlled buildings, which allow rapid biomass production using minimal land and continuous water supply
  • New specialty crops on reclaimed or marginal land—such as tomatoes, cut flowers, ornamentals, and guayule—offering high-value returns in controlled or niche markets
  • Controlled Environment Agriculture (CEA) in Containers/Buildings — Treating produced water and using it in hydroponic or aeroponic systems within shipping containers or retrofitted buildings.

However, it’s not without concern. Produced water contains salts, heavy metals, even traces of radioactive materials and PFAS (so-called “forever chemicals”). These pilot projects are focused on whether new treatment technologies can remove or neutralize those contaminants. No broad use is permitted yet—only tightly monitored experiments.

What Happens Next?

Texas regulators (RRC and TCEQ) are developing rules for future land application. Meanwhile, the Texas Produced Water Consortium at Texas Tech is coordinating research and setting potential standards. Full-scale use in agriculture will depend on:

  • Successful pilot results
  • Clear treatment and monitoring rules
  • Economic viability for farmers
  • Long-term environmental and crop safety

Bottom Line for Farmers

This is not ready for prime time—but it’s getting closer. If you’re farming in Texas near where there is Produced Water and facing water stress, this is an idea worth watching. You may soon have access to a new, local water source that was once just oilfield waste.

Breeding Better Organic Wheat: Traits That Matter for Organic and Regenerative Farms

As organic acreage grows across Texas and the U.S., it’s time we ask an important question: What traits do organic and regenerative wheat producers actually need in a variety?

The answer isn’t just about yield—it’s about resilience, efficiency, and the ability to thrive without synthetic inputs. Whether you’re an organic farmer relying on compost and cover crops or a regenerative grower working to build soil carbon and ecological health, wheat varieties bred for conventional systems often fall short. Here’s a breakdown of some critical traits we should prioritize in organic wheat variety development—and why they matter.

1. Strong Coleoptile and Deep Emergence

In dryland and low-input systems, farmers often plant deeper to chase moisture and to enable mechanical weed control like a rotary hoe. That practice demands wheat with a longer, stronger coleoptile—the protective sheath that helps the shoot push through soil. Many modern semi-dwarf wheats can’t make that journey from 2 to 3 inches deep. Instead, we need varieties with alternative dwarfing genes (like Rht8) or taller, lodging-resistant lines that emerge powerfully and uniformly even under crusted or variable moisture conditions.

Why it matters: Deep emergence helps ensure a strong start under tough conditions—especially important in organic systems where chemical seed treatments and quick-acting herbicides aren’t an option.

2. Broad-Spectrum Disease Resistance

Organic growers don’t have many options to clean up a bad wheat infection. That’s why durable, multi-pathogen resistance is a non-negotiable trait in organic wheat breeding. We need lines that can hold up against stripe rust, leaf rust, stem rust, Fusarium head blight, and barley yellow dwarf virus—especially in diverse rotations that include organic corn or sorghum.

Why it matters: Disease pressure isn’t just about yield—it also affects food safety (mycotoxins) and grain marketability. Genetic resistance is the organic grower’s best line of defense.

3. Microbiome-Friendly Roots and Efficient Nutrient Use

One of the quiet revolutions in organic systems is how we manage fertility through biology—not bags of synthetic nitrogen. The root-microbe relationship is central to that. We need wheat that partners well with beneficial microbes like mycorrhizal fungi and plant-growth-promoting rhizobacteria (PGPRs), especially for phosphorus and nitrogen uptake.

Traits like deep, fibrous root systems, high root exudation of sugars, enhanced nitrate transporter activity, and better nitrogen remobilization during grain fill could help wheat thrive in compost- and cover crop-based fertility systems.

Why it matters: Better nutrient use efficiency means stronger growth, better yields, and lower costs—without synthetic inputs.

4. Early Vigor and Weed Suppression

Weeds remain one of the most stubborn and expensive challenges in organic wheat production. Varieties that germinate quickly, tiller early, and develop dense leaf canopies can choke out weeds before they become a problem. Even row spacing and planting patterns can influence early shading and weed pressure.

Why it matters: A wheat variety that can suppress weeds is like adding a layer of insurance to your management strategy. It’s also a cornerstone of regenerative systems that seek to reduce tillage and maintain ground cover.

5. Grain Quality That Meets Market Needs

Organic grain buyers are looking for more than just “certified organic” on the label. They want wheat that meets or exceeds conventional food-grade quality benchmarks: high protein, strong gluten, low DON (vomitoxin) levels, and even enhanced nutritional traits like zinc, selenium, or antioxidant levels.

There’s also room to breed for emerging markets—heritage wheats, lower-gluten lines for sensitive consumers, or varieties with higher polyphenol and mineral content.

Why it matters: Organic wheat that delivers consistent quality keeps buyers coming back—and supports a fair price for growers.

Building a Breeding Program That Serves Organic and Regenerative Agriculture

Organic and regenerative agriculture aren’t “alternative” anymore—they’re growing sectors with distinct needs. Yet most wheat breeding is still tailored to high-input systems. It’s time to run trials under organic conditions, invite organic advisors into the selection process, and actively pursue traits that benefit biologically based systems.

Breeding for organic systems isn’t just good for organic farmers. It’s good for all farmers looking to reduce inputs, build resilient cropping systems, and respond to environmental and consumer demands.

Launching a New Chapter in Alfalfa Water Research

Yme Bosma 55-acre alfalfa field near Rising Star, Texas

In the heart of Central Texas, just outside May, we’ve begun an exciting research collaboration with Yme Bosma Dairy—a family-run dairy that relies on homegrown forage to feed their high-producing herd. This project centers on a 55-acre alfalfa field managed under a center pivot irrigation system, and our goal is straightforward but critical: improve the way we grow and water alfalfa in drought-prone environments like ours.

Why Focus on Alfalfa and Water?

Alfalfa is a high-value, nutrient-rich forage crop widely used in dairy systems, especially organic dairies. But it’s also water-intensive, and in regions like Central Texas or even Texas in general, where every drop counts, managing water wisely isn’t optional—it’s essential.

We’re not just asking “How much water is used?”—we’re digging deeper:

  • Can we grow more forage with less water?
  • Can we use in-field sensors and aerial data to guide irrigation decisions?
  • Can we improve the crop coefficient (Kc) used in scheduling tools, making them more accurate for this region?

Field Setup: A Unique Design for Real-World Impact

Pierce Center Pivot with app-based control

The project field is irrigated by a Pierce center pivot, managed by Dyson Irrigation using app-based controls. What makes this setup unique is how we’ve divided the field. Rather than square or rectangular plots, we’ve created 10-degree radial swaths that fan out from the center of the pivot pad—like slices of a pie. Each wedge can be irrigated differently by adjusting the pivot’s speed, allowing us to simulate a range of water conditions all within one field.

These swaths have been geolocated precisely, so we know exactly where each biosample or soil moisture sensor reading comes from. Though the field layout map is a great visual aid, our true experimental plots are mapped in GIS with accurate GPS coordinates for each treatment zone.

This project includes a lot of folks but is coordinated by the Digital Agriculture Group out of the Texas A&M AgriLife Research and Extension Center in Corpus Christi – Digital Agriculture. The group is led by Dr. Mahendra Bhandari and his team of researchers and students, all very hard workers!

Tools and Technology: Ground to Sky

What makes this project especially powerful is the technology behind it. We’ve installed three-foot-long soil moisture sensors (Goanna Ag) in each plot to monitor how deeply water penetrates and how long it stays available to the plant. These in-situ sensors give us real-time feedback at the root zone—a critical layer for alfalfa, especially in hot summer months.

In addition to ground sensors, we’re collecting UAS (drone) imagery every 15–20 days, paired with high-resolution satellite imagery. These tools will help us develop:

A GPS receiver to geolocate the different areas for monitoring.

  • Evapotranspiration maps showing water use across the field
  • Biomass prediction models based on imagery
  • Real-time irrigation scheduling tools using soil moisture and crop stage

All of this data funnels into decision-support models like SEBAL (Surface Energy Balance Algorithm for Land) and artificial neural networks, which help us simulate and optimize irrigation in silage alfalfa production.

Yme Bosma alfalfa ready to cut. The field is cut, wilted for a few hours and then chopped for silage.

What We Hope to Deliver

This is just the beginning. Over the next growing seasons, we aim to provide:

  • A better understanding of alfalfa water use and crop coefficients in Central Texas
  • New irrigation scheduling recommendations tailored for silage production
  • Biomass yield maps and stress indicators derived from aerial data
  • Practical insights for dairies and forage growers seeking to optimize yield while conserving water

This project is part of a broader effort to make alfalfa a more drought-resilient crop, and we’re excited to share what we learn with farmers, agronomists, and researchers across Texas and beyond.

This research is supported by the National Institute of Food and Agriculture, U.S. Department of Agriculture award number 2023-70005-41080 (Drought Resilient Alfalfa Production (D-RAP) Using Digital Agriculture and Machine Learning) with a joint collaboration between Kansas State University and Texas A&M AgriLife Research and Extension.

Stay tuned—we’ll be posting updates after each harvest, including images, early data trends, and insights from the field.

Texas Organic Agriculture Surges Forward with National Recognition

TOPP Impact Report Underscores Texas Leadership in Organic Milk, Cotton, and Peanuts

As national organic food sales soar past $71 billion, Texas is emerging as a dominant force in organic agriculture, bolstered by strategic investment from the USDA’s Transition to Organic Partnership Program (TOPP). According to TOPP’s newly released 2024 Impact Report, over 3,800 new operations have been certified nationwide, and Texas producers are taking the lead in organic innovation, acreage growth, and market share.

Texas is now home to more than 448 certified organic farms and over 611 organic handlers, producing across 580,000 acres in at least 88 counties. The Lone Star State ranks No. 1 nationally in organic milk, cotton, and peanut production — a testament to the state’s diversified and growing organic economy.

In 2019, Texas organic agriculture generated $424 million in sales and nearly $939 million in total economic output. By 2025, projections indicate the sector will contribute more than $1.4 billion in statewide economic output and support nearly 12,500 jobs, with a compound annual growth rate of 7% that mirrors national trends.

“Texas isn’t just keeping up—we’re leading,” said Bob Whitney, Organic Program Specialist with Texas A&M AgriLife Extension. “From dairy and peanuts in the west to vegetables and rice in the south and east, organic producers across Texas are creating real jobs, feeding local communities, and demonstrating what’s possible when farmers get the support they need.”

TOPP, launched in 2022 as part of the USDA Organic Transition Initiative, has helped hundreds of producers nationwide navigate the complex path to organic certification through mentorship, technical assistance, and community networks. Texas producers have benefited through local TOPP training events, bilingual outreach, and one-on-one mentoring that is helping new farmers transition more successfully and more sustainably.

As part of the six-region national framework, TOPP’s Southwest region includes a coalition of regional organizations and universities—including Texas A&M AgriLife Extension—that provide tailored support to Texas producers. Nationally, more than 260,000 acres have been added to certified organic production through the program’s efforts.

Texas’s success stands out even as some regions of the U.S. experience flat or declining organic acreage. Experts credit the state’s focused approach—blending grassroots mentoring, university-led research, and Extension outreach—for enabling sustainable growth.

TOPP’s report also highlights growing consumer demand: 88% of Americans recognize the USDA Organic label, and nearly 60% believe it justifies higher prices, creating strong economic incentives for Texas farmers to meet that demand domestically.

“TOPP is about more than transitioning farms—it’s about building community, restoring soil, and securing food systems,” said Whitney. “And here in Texas, it’s working.”

To learn more:
Full report: https://organictransition.org/impact-report