Update to “Applying Field Bindweed Gall Mites”

In case you haven’t read about Applying Bindweed Gall Mites then first read this blog post to understand why we are excited! Just click the button…

Also, you might want to check out this blog post on Organic Control of Field Bindweed that got this interest in Bindweed Gall Mites started. Just click the button….

Observations on Bindweed Gall Mites: Field Updates and Future Plans

If you had a chance to read my previous post about applying Bindweed Gall Mites in July, the picture above will make more sense! This marked area, indicated by the flag, is where we scattered pieces of field bindweed infested with Bindweed Gall Mites sourced from the insectary in Colorado. Following the application in July, we endured one of the hottest and driest August months on record, leading us to assume that the mites had perished. While the bindweed in this area appeared dead due to the drought, we knew from experience that field bindweed rarely succumbs to such conditions.

In September, the weather shifted with some much-needed rain. The field bindweed plants sprang back to life, looking healthy once again. Unfortunately, our initial assumption was that while the bindweed survived, the Bindweed Gall Mites did not.

Fast forward to Monday, December 9th. After receiving a call from Carl Pepper the previous Friday urging me to visit the field, I was met with a surprising sight. The flag in the photo marks where the mites were introduced back in July. Surrounding the flag is a somewhat circular pattern of dead or dying bindweed, while outside this area the bindweed appears alive and healthy. To the left edge of the photo, some bindweed remains slightly green, but below and beyond the flag the plants look unmistakably dead. This circular pattern extends outward, as highlighted by the line drawn across the photo.

One might argue that this is merely a drought-affected patch. However, we placed a second batch of Bindweed Gall Mites in another area of the field, and a similar circular pattern has emerged there as well. These mites are so tiny that they are invisible to the naked eye, but in the lab, Dr. Kyle Slusher, an Extension Entomologist in our office, identified galls on collected bindweed plants under magnification.

Future Plans for Bindweed Gall Mites

Our immediate hope is to see the affected areas of bindweed continue to decline. While we don’t expect the mites to eradicate the bindweed entirely, a balance is desirable to ensure the mites’ survival. Looking ahead:

  • Field Monitoring: We’ll continue observing the affected areas to assess long-term impacts.
  • Laboratory Work: Dr. Slusher plans to conduct further studies on the mites in a controlled lab environment.
  • Farmers’ Interest: Several local farmers have expressed interest in this biological control method and plan to collect infested bindweed from this field to introduce on their farms.
  • Suitability for Dry Climates: The mites’ preference for hot and dry conditions aligns well with the West Texas climate, making this an intriguing and potentially effective solution for bindweed management in the region.

This project represents a promising step in biological pest control for field bindweed, and we’re excited to see how this progresses both in the field and through collaboration with area farmers. A big thanks to Carl Pepper for allowing us to experiment with this novel insect and to continue monitoring progress!

Corn Breeding – Not an Easy Process

In the world of organic agriculture, the continuous development of improved corn varieties is crucial for addressing the evolving challenges faced by farmers. This November, Dr. Wenwei Xu, a TAMU Research Corn Breeder from Lubbock, and I traveled to work in the Winter Corn Nursery in Ponce, Puerto Rico. Our mission involved carefully collecting pollen from specific corn varieties and crossing them onto the silks of other varieties to produce hybrids for future variety production.

The Winter Corn Nursery plays a vital role in accelerating the breeding process by allowing researchers to conduct additional growing cycles during the off-season. This enables breeders to make faster progress in developing new varieties with desirable traits such as brown mid-rib, improved leaf structure for weed suppression, drought tolerance, high antioxidant production, and enhanced silage production capability. By utilizing winter nurseries, breeders can significantly reduce the time required to bring new, improved varieties to market, ultimately benefiting organic farmers and the agricultural industry as a whole.

The work of corn breeders is essential for advancing organic agriculture and addressing the unique challenges faced by organic farmers. Through careful selection and crossing of varieties with known traits, breeders aim to develop new hybrids that combine multiple desirable characteristics. These efforts result in corn varieties that are better adapted to organic growing conditions, more resilient to pests and diseases, and capable of producing higher yields with improved nutritional profiles. By continually refining and enhancing corn genetics, breeders contribute to the sustainability and productivity of organic farming systems, helping to meet the growing demand for organic products while supporting the long-term viability of organic agriculture.

Some New Organic Projects and Products

Texas A&M Researchers Develop Innovative Organic Herbicide with $100,000 Grant

Texas A&M University’s Advancing Discovery to Market (ADM) grant program has awarded a $100,000 grant to further develop a groundbreaking organic pre-emergent herbicide technology. This innovative project, led by Dr. Lawrence Griffing from the Biology Department, aims to create a natural, non-toxic herbicide that effectively controls weeds without harming crops or the environment

The proposed herbicide works by utilizing plant sterols to inhibit weed growth through a novel mechanism of action. Early tests show promising results, with the potential to reduce weed biomass by more than 90% in month-old plantings of both broadleaf and grass weeds

What sets this herbicide apart is its organic nature and potential cost-effectiveness, with estimates suggesting it could provide weed control at 1/3 to 1/100 of the existing cost for broad-spectrum weed management

This ADM grant will support crucial field testing and formulation development, bringing the technology closer to market readiness. The project team is collaborating with Texas A&M AgriLife Research and Extension to conduct comprehensive field trials across multiple crops and soil types

This research not only advances organic farming practices but also demonstrates the commitment of myself and other Extension specialists and researchers to developing practical, sustainable solutions for organic producers.

New Organic Insecticide with a Twist!

Entrapment developed by Attune Agriculture is an innovative organic insecticide that works by altering the physical properties of water to create an effective trap for various pests. This product is particularly promising for use in grape vineyards to control leafhoppers, an insect that can caused lots of headaches for Texas growers. Entrapment’s unique mode of action involves changing the surface tension of water droplets, allowing them to adhere to leaf surfaces and trap insects upon contact.

“Entrapment insecticide provides a high level of control of many of the most important insect and mite pests in agriculture that can be applied up until harvest, a much-needed tool for growers,” says Greg Andon, CEO of Attune Agriculture. “We believe its unique combination of physical mode of action, efficacy within a specific pest size range, and lack of phytotoxicity make Entrapment one of the most consequential new actives to be introduced in many years.”

Entrapment’s unique spectrum of activity provides effective control of aphids, thrips, psyllids, whiteflies, scales, leafhoppers, mites, plant bugs, flea hoppers, chinch bugs and small caterpillars. The EPA registered label includes most crops: fruit, nut, vegetable, row crop, greenhouse, and turf & ornamental.

One of the key advantages of Entrapment is its versatility across different crop types. While it shows promise for use in vineyards, there is also potential for its application in row crops, which could provide a more cost-effective and environmentally friendly alternative to conventional pesticides. 

It’s important to note that while Entrapment offers an exciting new tool for organic pest management, research on its effectiveness in various agricultural settings is still being conducted. As with any new product, further studies and field trials will be necessary to fully understand its potential benefits in different crops and pest species. Farmers are encouraged to conduct their own trials and share results (please!) to build a better understanding of any new organic product’s capabilities in agricultural fields.

New Generic Version of Popular Organic Insecticide Now Available!

Great news for organic farmers battling insect pests! Spinosad, the active ingredient in Corteva Agriscience’s Entrust Naturalyte Insecticide, is now available as a generic product. This OMRI-approved organic insecticide has long been a go-to solution for controlling:

  • Worms and caterpillars
  • Thrips
  • Leafminers
  • Fire ants
Cost-Effective Alternative

Previously, the high cost of Spinosad made it challenging to use on commodity crops and even some vegetable and grape productions. However, with the expiration of the patent, a more affordable generic version has entered the market.

Introducing Estero by Atticus

Atticus is now distributing “Estero,” a generic Spinosad product. Key points to note:

  • Estero has the same formulation as Entrust
  • It may still be manufactured by Corteva Agriscience
  • The efficacy and quality remain unchanged
Availability and Ordering

Atticus works with major agricultural retailers to distribute Estero. However, farmers may need to specifically request the product to ensure local availability.

Texas Contact Information

For Texas farmers interested in Estero, contact:

Audie Wolf
Texas Sales Representative for Atticus
Phone: 806-567-0324
Location: Texas Panhandle

This generic alternative offers organic farmers a chance to effectively manage pests while potentially reducing input costs.

The Squeeze on Organic: Comparing Profitability Trends in U.S. Grain Markets

The profitability squeeze is particularly severe for organic farmers compared to their conventional counterparts. While both sectors face rising production costs and increased global competition, organic producers are experiencing a “double whammy” of higher costs and lower prices relative to pre-2021 baselines. Conventional grain prices, though down from recent highs, still exceed cost increases when compared to the 2016-2021 period. In contrast, organic corn prices have fallen below historic baselines while production costs have increased. This trend threatens the traditionally higher net returns of organic corn and soybean farming, which have outperformed conventional returns by $12 to $485 per acre over the past eight years.

The declining profitability of organic grain farming raises concerns about farmer retention and the future of organic agriculture in the U.S. It’s estimated that there has been a 5% decrease in the number of organic farmers in 2024 compared to the previous year. Some farmers are considering switching to more profitable organic crops or even reverting to conventional farming. This situation poses a significant challenge to the organic industry and could potentially impact the environmental benefits associated with organic farming practices, including improved water quality and soil health.

Sources include:

Argus Media. “Shrinking profitability of organic farming.” Argus AgriMarkets Organic and Non-GMO service, November 2024.

Grow Well Consulting. “Is the profitability plunge in U.S. organic actually worse than corrections happening in conventional?” October 28, 2024.

Enhancing Organic Rice Yields: Texas Researchers Lead the Way in Ratoon Crop Production

Dr. Tanumoy Bera is a Postdoctoral Research Associate at the Texas A&M AgriLife Research Center in Beaumont. In 2022 he was awarded a grant by Southern SARE with a project called, “Development of Sustainable Organic Rice Ratoon Production Systems in the Southern US,” and he has some excellent results so far with more to come. Here is a progress report from Dr. Bera and I think organic rice growers can benefit from his observations.

by Dr. Tanumoy Bera, Rice Researcher

While organic rice consumption in the U.S. has grown substantially in recent years, demand for domestically grown organic rice hasn’t kept pace. Instead, cheaper imports have dominated the market, creating challenges for U.S. producers trying to meet the increasing appetite for organic rice while maintaining profitability. To address these challenges, researchers at Texas A&M AgriLife in Beaumont are focusing on improving organic ratoon rice production—a method that allows rice to be harvested from the regrowth of previously harvested stubble. This technique is especially valuable because it enables a second harvest without the need to replant, which helps farmers reduce costs, increase productivity, and compete with lower-priced imports while still maintaining a viable net income per acre.

This ongoing study, initiated in 2022, aims to evaluate how rice cultivars, crop rotation practices, and nitrogen application rates affect the yield and quality of organic ratoon rice. The team tested two cultivars—Presidio and RiceTec XP753—alongside two management approaches: winter fallow and cover cropping. Their goal is to determine how these factors influence yield, milling quality, nitrogen content, and nitrogen removal in an organic ratoon system.

Early findings have been promising. The hybrid XP753 showed a remarkable performance, increasing the main crop yield by 75% and ratoon yield by 97% compared to Presidio. This is partly due to hybrid varieties like XP753 being bred to combine the best traits from parent plants, resulting in higher yields and greater resilience—key attributes for organic farming.

However, establishing cover crops in southeast Texas has been challenging, mainly due to wet winters and poor drainage in heavy clay soils. Despite these difficulties, cover crops, when successfully established, have provided significant benefits. To enhance nitrogen availability, the researchers utilized organic-approved inputs such as compost and cover crops, finding that an equivalent of 90 pounds of nitrogen per acre was optimal for achieving the greatest yields, with greater rates offering no additional advantage. This insight helps farmers optimize nitrogen inputs using sustainable sources, saving costs while promoting organic practices.

Looking ahead, the research will continue into the 2025 season, aiming to refine these findings and explore their long-term impacts. This work is crucial as demand for organic products continues to rise, providing farmers with improved productivity while supporting sustainable agricultural practices. With initiatives like this, Texas A&M AgriLife is helping pave the way for a more resilient and environmentally friendly future in agriculture.

Other Rice Resources (just click a link!)

Understanding the Three-Line CMS System in Hybrid Rice Breeding

As rice breeding continues to advance, hybrid rice varieties have emerged as a powerful tool for increasing yields, improving disease resistance, and enhancing grain quality. A key innovation behind hybrid rice production is the Cytoplasmic Male Sterility (CMS) system, which enables breeders to produce hybrid seeds efficiently. This blog post explains how the three-line CMS system works and why it’s so valuable for breeders and farmers alike.

What is Cytoplasmic Male Sterility (CMS)?

Cytoplasmic Male Sterility (CMS) is a genetic trait that prevents a plant from producing functional pollen. This characteristic is particularly useful in hybrid seed production because it ensures the plant cannot self-pollinate. Instead, the male-sterile plant must be pollinated by another plant, allowing breeders to control the parentage of hybrid seeds.

The Three-Line System in Hybrid Rice Production

The three-line system involves three types of rice lines:

  • A-Line (CMS Female): A male-sterile line that cannot produce viable pollen, used as the female parent in hybrid seed production.
  • B-Line (Maintainer Line): Genetically identical to the A-line but fertile. It is used to maintain the CMS trait in the A-line.
  • R-Line (Restorer Line): A fertile line that carries restorer genes to restore pollen fertility in the F1 hybrid generation.

Each of these lines plays a critical role in ensuring the successful production of hybrid rice seeds, and together they contribute to the final hybrid variety’s vigor and performance.

How the Crosses Work in the Three-Line System

1. Maintaining the CMS Line

The A-line (CMS female) is male-sterile, meaning it cannot produce seeds on its own because it lacks viable pollen. To maintain this line, breeders must cross the A-line with the B-line (maintainer), which has the same genetics but does not have the male-sterile trait.

  • Cross: A-Line (CMS female) × B-Line (Maintainer male)
  • Result: More A-line seeds, all of which remain male-sterile. The B-line helps propagate the A-line without restoring fertility, ensuring that male sterility is preserved.

2. Producing Hybrid Seeds

Once enough CMS A-line plants are produced, they are crossed with the R-line (restorer) to create hybrid seeds. The R-line carries genes that restore pollen fertility in the hybrid offspring, allowing the hybrid plants to reproduce normally.

  • Cross: A-Line (CMS female) × R-Line (Restorer male)
  • Result: F1 hybrid seeds that combine the best traits from both the A-line and the R-line. These seeds exhibit hybrid vigor (heterosis), meaning the plants will grow faster, yield more, and be more resilient to stresses like pests and diseases.

Visual Representation of the Three-Line System

Below is a flowchart that visually represents the three-line CMS system:

    A-Line (CMS female) × B-Line (Maintainer male)
              ↓
     Male-Sterile Seeds (A-Line)
              ↓
A-Line (CMS female) × R-Line (Restorer male)
              ↓
     F1 Hybrid Seeds (Fertile)

This flowchart provides a simplified view of how the A-line, B-line, and R-line interact to produce hybrid seeds. It helps to visualize the sequential process of maintaining the CMS line and producing vigorous hybrid seeds.

Distribution of Beneficial Traits in the Three Lines

In the three-line system, both the A-line and R-line contribute valuable traits to the hybrid, while the B-line helps maintain the CMS line. Here’s a breakdown of what each line brings to the table:

Line TypeRoleTraits Contributed to Hybrid
A-Line (CMS)Female parent; male-sterileCarries key agronomic traits (yield, quality, resistance)
B-Line (Maintainer)Maintain A-line; not used in hybridGenetically identical to A-line; used for maintenance
R-Line (Restorer)Male parent; restores fertilityProvides restorer genes and complementary traits to enhance hybrid vigor

Why Use the Three-Line System?

The three-line CMS system has been a game-changer in hybrid rice breeding for several reasons:

  • Efficient Hybrid Seed Production: CMS ensures the A-line plants cannot self-pollinate, making it easier for breeders to control the crossing and ensure that hybrid seeds are produced with the desired genetic combinations.
  • Hybrid Vigor: The cross between the A-line and R-line produces F1 hybrid plants that often outperform both parent lines due to heterosis (hybrid vigor). These plants grow faster, produce higher yields, and are more adaptable to varying environmental conditions.
  • Consistent Performance: By carefully selecting A-line and R-line parents, breeders can develop hybrids that consistently deliver high yields and other desirable traits, such as disease resistance or drought tolerance.

Real-World Example in Rice

For example, let’s say a breeder selects an A-line that has high grain quality and yield potential but lacks disease resistance. They could pair this A-line with an R-line that has strong disease resistance and good stress tolerance. The resulting hybrid will combine these traits, offering farmers a variety that not only yields well but also stands up to diseases and environmental stressors.

Saving Hybrid Rice Seeds and Trait Loss

It’s important to note that saving seeds from hybrid rice plants is generally not recommended. The F1 hybrid seeds produced through the three-line system exhibit hybrid vigor due to the combination of traits from the A-line and R-line. However, if these hybrid seeds are saved and replanted, the resulting plants (F2 generation) will not retain the same level of performance. This is because the desirable traits that make the F1 hybrids so productive can segregate and diminish in subsequent generations, leading to reduced yields, inconsistency, and loss of hybrid vigor. To read more about organic rice varieties and resources click this link: Organic Rice Resources

Key Takeaways

  • A-line (CMS) contributes key agronomic traits but cannot produce pollen, ensuring controlled cross-pollination.
  • B-line is a maintainer, used to propagate the A-line but not involved in the hybrid seed production.
  • R-line restores fertility and adds complementary traits, leading to a vigorous and productive F1 hybrid generation.

The three-line CMS system enables efficient hybrid seed production, combining the best traits from different lines to create high-performing hybrids that meet farmers’ needs for yield, resilience, and grain quality. The three-line CMS system remains one of the most effective methods for producing hybrid rice seeds, ensuring that breeders can develop varieties that push the limits of productivity and sustainability.

Conclusion

As global demand for rice, especially organic rice, continues to grow, the ability to produce high-yielding, resilient hybrid varieties through the CMS system is more important than ever. This method ensures that breeders can consistently produce hybrids that help farmers achieve better harvests, even in the face of environmental and biological challenges. Hybrid rice breeding holds a promise for amplifying traits important for organic producers.

By understanding the nuances of the A-line, B-line, and R-line, breeders can make informed choices about which traits to focus on in their breeding programs. Ultimately, the three-line system not only enhances hybrid seed production but also contributes to the long-term sustainability of rice farming.