Turning Oilfield Wastewater into Agricultural Opportunity

As farmers in the Texas know all too well, water is the lifeblood of our land—and it’s in short supply. But what if one of the most abundant waste streams in our region could be cleaned up and used to grow crops? That’s the question being tested right now in several pilot projects across Texas, where treated oilfield wastewater, called produced water, is being evaluated for agricultural use.

WaterTectonics at a site in Midland treating Produced Water for reuse in a fracking operation. Similar to what might be done in agriculture. Picture from https://www.watertectonics.com/project/texas-produced-water-reuse-treatment/

What is Produced Water?

Produced water is the salty, chemical-laden byproduct that comes up with oil and gas during drilling operations. The Permian Basin alone generates around 24 million barrels of this water every day—that’s equivalent to roughly 1 billion gallons, about 37,196 acre-inches, or over 3,100 acre-feet daily. Historically, this water has been disposed of underground, but with growing water needs and improving treatment technologies, many are asking: can we make this water safe and useful for agriculture??

New Pilot Projects in Texas Agriculture

Thanks to recent legislation (notably SB 1145, effective Sept. 1, 2025), Texas is laying the groundwork for farmers to eventually use treated produced water. But for now, only pilot projects are permitted—and here are some of the most important ones:

OrganizationPilot ScopeLocationCrops or Focus
Texas Pacific Water Resources (TPWR)Treating water with reverse osmosis; testing 400+ contaminantsMidland and Pecos River areaAlfalfa, native grasses (greenhouse & outdoor)
Deep Blue OperatingIrrigation pilot using up to 27,300 gal/dayMidland CountyCotton, bermuda grass, alfalfa, wheat
Texas Produced Water ConsortiumResearch coordination, data analysisMultiple West Texas sitesSupports 5 pilot sites with varying treatment systems
TETRA & EOG ResourcesDesalination pilot with high recovery ratesPermian BasinRangeland grasses (greenhouse testing)
Aris Water Solutions & GarverMembrane & thermal treatment systemsPermian BasinSystem design; seeking TCEQ irrigation permits
General Land Office & EOG Resources1-acre soil/crop health trialReeves CountyMonitoring nutrient uptake and plant health

These pilot projects are being carefully watched—not only by state regulators but by farmers, environmental scientists, and rural water managers. If successful, they could help shift produced water from being a liability to a resource.

Opportunities for High-Value Ag

For Texas (particularly West Texas) growers, the implications are huge. While piping treated produced water to distant farms is one possible use, its greatest potential may lie right at the source—near oilfields. These areas often have access to electricity, trucking infrastructure, and available land. That makes them ideal for developing high-value production systems where water and logistics are already in place. In this context, treated produced water could potentially support:

  • Alfalfa for hay export or dairy feed
  • Hydroponic cotton in controlled environments—growing cotton without soil in greenhouses using treated produced water. This approach, pioneered in Spain by Magtech and now being explored by researchers in Texas, can increase cotton yield up to 60 times per plant while reducing water use by as much as 70%. With greenhouse infrastructure, electricity, and logistics already in place at oilfield sites, hydroponic cotton may offer a promising high-value use for treated produced water.
  • Small grains for forage or cover crop use—including some hydroponic or germinated forage systems grown in controlled buildings, which allow rapid biomass production using minimal land and continuous water supply
  • New specialty crops on reclaimed or marginal land—such as tomatoes, cut flowers, ornamentals, and guayule—offering high-value returns in controlled or niche markets
  • Controlled Environment Agriculture (CEA) in Containers/Buildings — Treating produced water and using it in hydroponic or aeroponic systems within shipping containers or retrofitted buildings.

However, it’s not without concern. Produced water contains salts, heavy metals, even traces of radioactive materials and PFAS (so-called “forever chemicals”). These pilot projects are focused on whether new treatment technologies can remove or neutralize those contaminants. No broad use is permitted yet—only tightly monitored experiments.

What Happens Next?

Texas regulators (RRC and TCEQ) are developing rules for future land application. Meanwhile, the Texas Produced Water Consortium at Texas Tech is coordinating research and setting potential standards. Full-scale use in agriculture will depend on:

  • Successful pilot results
  • Clear treatment and monitoring rules
  • Economic viability for farmers
  • Long-term environmental and crop safety

Bottom Line for Farmers

This is not ready for prime time—but it’s getting closer. If you’re farming in Texas near where there is Produced Water and facing water stress, this is an idea worth watching. You may soon have access to a new, local water source that was once just oilfield waste.

Modifications to Increase Vegetable Earliness and/or Yield

Topics Covered in This Article!

  1. Selection of the Land
  2. Selection of Variety
  3. Use Windbreaks
  4. Providing Frost Protection
  5. Use of Row Covers
  6. Plastic Mulch
  7. Transplants
  8. Drip Irrigation
  9. Fertility
  10. Use of Growth-Promoting Substances
  11. Staggered Planting
  12. Resources

Light, sandy soils warm up faster than heavier, poorly drained soils. Of course, we don’t always have a choice, but if you are going to spend money on transplants and fertilizer, choose your best land for vegetables. The heat to warm up wet soil 1 degree will heat up dry soil 15 degrees.

Check the days to maturity. There is a big difference between many varieties, and this area needs careful consideration. The early variety may not be the best overall, but it can get you into the market earlier, which can be advantageous.

This is perhaps the most important based on work I have done with melons. Windbreaks can decrease time to maturity by a week. Windbreaks are simply plantings with taller plants done weeks or months before your vegetable crop is planted. For example, a rye crop planting in October will be heading out when you plant melons April 1st. The melon crop is stripped into the standing rye.

In the past, I have worked with growers who went to the trouble and expense to bring in helicopters when an early morning freeze was predicted. It is not unusual to see vineyards with ‘wind machines’ to circulate air when a frost is predicted. Water sprinklers will coat plants with ice which is a freeze protection – sounds crazy I know! Some orchard owners will have bales of hay they set on fire to generate a smoke layer that holds in heat. The basic message is to be prepared if you plant early.

High-value crops like strawberries really benefit from the use of row covers. These can be expensive, so the crop must generate good income to justify the cost. Floating row covers can protect plants from early-season pests and cold temperatures, allowing for earlier planting and faster growth (4 above). These covers can be removed once the danger of frost has passed or may be left on to protect from insect pests.

These increase earliness by warming the soil, conserving moisture, preventing weed problems, and increasing total plant yields. In our Texas soils, plastic mulch can also help keep the plant row from becoming too wet or too dry.

Transplants will greatly increase earliness but only if the transplant is healthy and vigorous. You must use organic sourced transplants! Currently we are working to develop better organic transplants and methods for growing transplants in a TDA supported Specialty Crop Grant. Some transplants that have been grown too long in the greenhouse don’t do well in the field so check your source constantly for when they will be ready so you will be ready.

Providing water in small amounts often is the job of drip irrigation. Used with plastic mulch, drip irrigation increases earliness and yield. Drip irrigation is fairly easy to install and relatively inexpensive. You generally need a pressure regulator, filter, hoses or pipes to carry the water and drip tape to deliver to the crop.

High levels of nutrients ensure rapid growth and utilization of water and sunlight. Many growers struggle to provide stored nutrients in soil, provide pop-up nutrients at planting, and fertilize with organic nitrogen sources through harvest. Regular soil testing helps determine nutrient deficiencies and allows for proper soil amendment before planting. Balanced soil fertility is crucial for early and vigorous plant growth.

Effect of fulvic acid on yield performance of organic bell
pepper (Capsicum annuum L.) under open‑field conditions
in Tennessee. 2023

Certain growth-promoting substances, like seaweed extracts or microbial inoculants or even Fulvic Acid, can enhance earliness, plant growth and development, potentially leading to earlier harvests.

Planting in staggered intervals (planting tomatoes on a 2-week schedule) can help manage for frost losses and increase the harvest window and ensure a continuous supply of produce, allowing entry into the market over a longer period.