

Carbon storage potential in Texas' High Plains

Katie Lewis, Wayne Keeling, Paul DeLaune, Joseph Burke, & Christopher Cobos

Increasing Soil Carbon

Conservation management practices like cover cropping and no-tillage can sequester atmospheric carbon dioxide (CO₂) and store it as organic carbon in the soil which can increase water storage, reduce drought stress, and improve soil quality/health.

The effect of conservation management practices on soil carbon in semi-arid climates like the Texas High Plains is poorly understood.

What We Can Measure

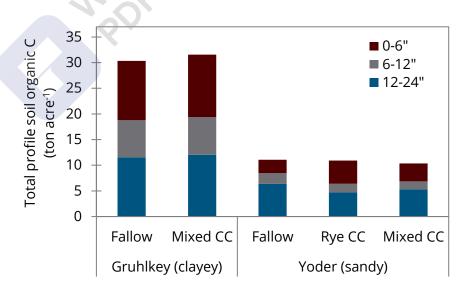
Our lab is fully equipped to measure soil carbon and track improvements in soil health from conservation management practices.

Assessment opportunities:

- Soil carbon pools & stocks
- Greenhouse gas emissions
- Soil microbial communities
- Nutrient cycling
- Soil quality/health

Funding Sources

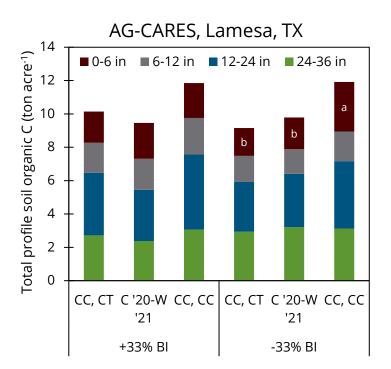
- Texas Corn Producers Board
- Texas State Support
- Cotton Research and Promotion Program
- Lamesa Cotton Growers
- Natural Resources Conservation Service

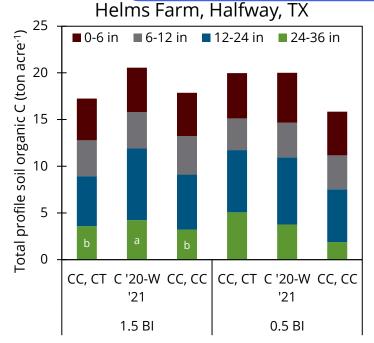

CURRENT RESEARCH IN SOIL CARBON

Since 2015, we have been assessing soil carbon (C) stocks in Texas High Plains semi-arid cotton and corn production. With limited rainfall, increases in soil C are slow to observe following the adoption of conservation management practices. However, once improvements in soil C are observed, we also see improvements in ecosystem services.

Systems currently being evaluated include:

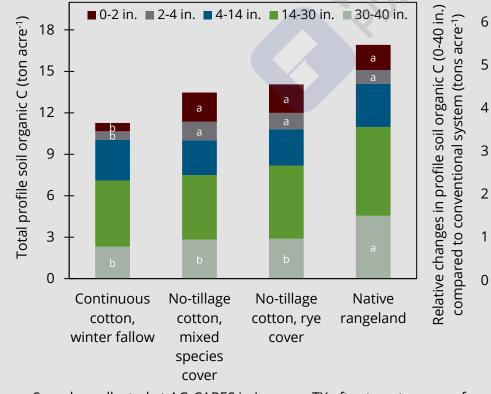
- Three years post-cover crop adoption in corn monocultures (Randall and Dallam Counties)
- Seven years post-cover crop and no-tillage adoption in cotton monocultures (Dawson and Hale Counties)
- Twenty years post-cover crop and no-tillage adoption in Dawson County

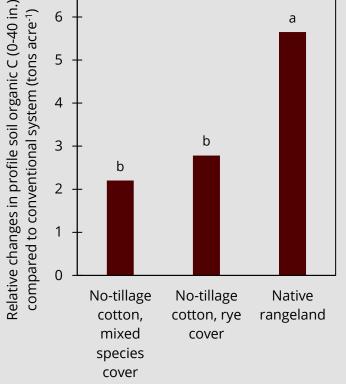



- Samples collected after three years of cover crop adoption in corn monocultures
- Gruhlkey Farm located in Randall County (Pantex silty clay loam)
- Yoder Farm located in Dallam County (Dallam loamy fine sand)

Soil organic carbon stocks increase with long-term (18+ years) adoption of conservation management

Katie L. Lewis, Ph.D.


Associate Professor, Texas A&M AgriLife Research 806.746.6101 | katie.lewis@ag.tamu.edu



- Samples collected after seven years of conservation management in cotton monocultures
- Soil series: Amarillo fine sandy loam
- Treatments: (1) CC,CT, continuous cotton, conventional tillage; (2) C'20-W'21, cotton-wheatfallow; (3) CC,CC, continuous cotton, cover crop
- BI: base irrigation of approximately 7.6 inches

- Samples collected after seven years of conservation management in cotton monocultures
- Soil series: Pullman clay loam
- Treatments: (1) CC,CT, continuous cotton, conventional tillage; (2) C'20-W'21, cotton-wheatfallow; (3) CC,CC, continuous cotton, cover crop
- BI: base irrigation of approximately 10.0 inches

- Samples collected at AG-CARES in Lamesa, TX after twenty years of conservation management
- Native rangeland located near Wellman, TX, unplowed at least 80 years
- · Soil series: Amarillo fine sandy loam